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Magnon properties of the one-dimensional 
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Xiangtan University, Xiangtan, Hunan, People’s Republic of Chinat 

Received 6 December 1988 

Abstract. At low excitations, the ferromagnetic spin-wave problem of the one-dimensional 
quasiperiodic system is converted into the one which is analogous to the electronic and 
phonon problems. The ferromagnetic magnon properties are studied by the transfer-matrix 
technique and i t  is concluded that the frequency spectrum is a Cantor set. It is also shown 
that, at low excitations, the antiferromagnetic spin-wave problem of the one-dimensional 
quasiperiodic system can be converted in a similar way to the ferromagnetic one, and the 
antiferromagnetic magnon properties can be studied by the transfer-matrix technique. 

Electronic states of the one-dimensional ( ID)  quasiperiodic system had been studied 
using the transfer-matrix technique (Kohmoto et a1 1983, Ostlund et a1 1983), but the 
interest in the electronic properties was renewed after the discovery of the icosahedral 
quasicrystals by Shechtman et a1 (1984). There have been two methods of investigating 
the electronicstates of quasiperiodic systems; one is basedon the continuous Schrodinger 
equation (Lu and Birman 1987, You 1988) and the other on the tight-binding model (or 
the discrete Schrodinger equation) (Kohmoto 1987 and references therein, Kohmoto et 
a1 1987 and references therein). 

The first method develops the ‘boost-and-project’ technique, i.e. it is based on 
the fact that quasilattices can be constructed by projecting special subsets of higher- 
dimensional periodic lattices onto lower-dimensional physical sub-spaces (You and 
Hu 1988 and references therein); the pseudo-Schrodinger equation with a periodic 
pseudopotential is established and the electronic behaviour may be treated as the 
projection of that of the Bloch pseudo-electrons in higher dimensions. Alternatively, 
the transfer-matrix technique may be employed in the second method to deal with the 
electronic properties in one dimension. In addition, the I D  phonon properties can 
also be studied similarly using the transfer-matrix technique (Kohmoto et a1 1987 and 
references therein). In the following paper we shall make it clear that, at low excitations, 
the ferromagnetic spin-wave problem of the I D  quasiperiodic system can be converted 
into the one which is analogous to the electronic and phonon problems. Thus one can 
study the ferromagnetic magnon properties of the I D  quasiperiodic system by using the 
transfer-matrix technique. It will be also shown that, at low excitations, the anti- 
ferromagnetic spin-wave problem can be converted in a similar way to the ferromagnetic 
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one and the antiferromagnetic magnon properties of the I D  quasiperiodic system can be 
studied by the transfer-matrix technique. 

Consider a chain of spins S , ,  in which the magnitude of each spin is S and the spins 
are located successively at sites n = 1 , 2 ,  . . . , N (+a). Two types of bonds, J A  and JB,  
are chosen, which are arranged quasiperiodically following the Fibonacci sequence S ,  
that is constructed recursively as SI+ = {.SI, S I -  1} for 1 S 1 with So = JB and S,  = J A .  For 
an arbitrary given N ,  the Heisenberg Hamiltonian is 

where the bond J,+ is the exchange integral coupling the spins on sites n and n + 1. In 
the ferromagnetic case, the bonds J A  and JB are chosen to be positive, i.e. J ,  > 0 and 
JB > 0. The rectangular components of the spins obey the commutation rules 

[SF, ~ f ]  = ihd,,Eap,S: ( 2 )  

in which E.@, is the completely antisymmetric Levi-Civita symbol ( E ~ ~ ~  = tyzx - - E , ~  - - 

1; Eyxz = Ezyx = Exzy  = - 1). 
According to the quantum-mechanical principle, the motion of the spinS,isgoverned 

by the Heisenberg equation of motion 

dS,/dt = (l/ih)[S,, HI. (3) 

In terms of the commutation rules ( 2 ) ,  the equation of motion can be expressed in 
component form as 

Apparently, these three equations are non-linear. When the excitations are small enough 
with Si ,  S{ < S,  then S; = S and the product terms of S" and SY may be cancelled, 
yielding the linear equations 

dS",dt = K,(S{ - Sg-1) + K,+l(SY, - S{+l) ( 5 a )  

with K,, = 2J,S and Kn+l = 2 J , + J .  

( 5 a )  and (56) as 
Assume that SX, = U ,  exp( -io[) and S{ = U ,  exp( -iot) ,  one can write equations 

-wSX, = iKn(S{-I - SY,) + iKn+l(SY,+l - SY,) (6a )  
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Define S+ = SA + is'. The above two equations can be then converted into the following 
equation 

-OS,+ = K,,+ISJ+I + KnS;-I -(K,,+i + K n ) S T .  (7) 

This equation of motion is analogous to the tight-binding model for the electronic 
problem with the hopping matrix elements in the Fibonacci sequence 

t t i + ~ ~ n + ~  + f n I j l t i - ~  = EIjln (8) 
and that for the phonon problem with the masses equal and the spring constants following 
the Fibonacci sequence 

-m '~ j l r i  = Kt i+I~ t i+1  + K n ~ i i - i  - (Kr ,+l  +Krt)Vn. (9) 
In matrix form, equation (7) can be equally written as 

= M(K,,+l? Kll)S,:. (10) 

S;ty+l = M ( W :  (11) 

M(N) = M(KN+il K,v)M(K,v, K N - I ) .  . . M(&, KI) .  (12) 

A+ = a{TrM(N) k [(TrM(N))2 - 4 det M(N)]'i2} (13) 

The spin wave at an arbitrary site is represented by 

where 

The eigenvalues of M(N)  are given by 

where TrM(N) and detM(N) are the trace and determinant of M(N), respectively. If the 
periodic or antiperiodic condition is applied, i.e. S&+l = ? S : ,  then IA,/ = 1 and the 
condition for the allowed frequencies is 

TrM(N) = k (1 + detM(N)}. (14) 
Assume that Nis a Fibonacci number F/. Since F,+ = F/- + F/ with F,  = F1 = 1, the 

transfer matrix M(F,) = M, satisfies the recursion relation 

M/+l = M/-IM/ (15) 
with M1 = M(KA, KA) and M2 = M(KA, KB) M(KB, KA). As detM, = detM, = 1, then 
detM, = 1 for 1 1 according to the recursion relation (15). The condition (14) becomes 

x / = t 1  (16) 
where x/ = 4 TrM/. 

the conditions for the bands and gaps of the magnon spectrum are respectively 
Commonly, it is required that any spin wave should not diverge, thus IA+.I s 1 and 

bands IX l l  1 (17) 

gaps lX / I  > 1. (18) 
The frequency spectrum of the ferromagnetic magnon problem is obtained by the limit 
I- ,  =, 
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Figure 1. Band structures with I = 2 , 3 , 4 , 5  and 6 
for the ferromagnetic problem for K A  = 1 .0 and 
KB = 2.0. The spectrum of the quasiperiodic sys- 
tem is obtained by the limit I +  2. 

Figure 2. Band structures with I = 2 , 3 , 4 , 5  and 6 
for the phonon problem for K,, = 1.0 and KB = 
2.0. The spectrum of the quasiperiodic system is 
given by the limit I -  =. 

By introducing the trace of MI, the matrix map (15) is reduced to the trace map 
(Kohmoto et al1983) 

X / + ]  = 2 X l X / - ,  - X j - 2 .  (19) 

The successive iteration of the trace map has a constant of motion 

Z = X ~ + ,  + x :  S ~ f - 1  - ~ x / + I x ~ x / - ~  - 1 = (02/4)(1/K, - 1/K,)* (20) 

which is independent of the index lof the Fibonacci number. Nevertheless, the conserved 
quantity Z(w) depends on the frequency, i.e. the iterates evolve on different surfaces for 
different frequencies. 

The band structures for the ferromagnetic problem are shown in figure 1 for I = 2, 
3, 4, 5 and 6, which is similar to the spectra for the phonon problem (figure 2). The 
spectra for I > 6 can be similarly obtained and it can be shown that the spectrum of the 
ferromagnetic magnon problem of the I D  quasiperiodic system is a Cantor set, i.e. the 
spectrum has the self-similarity and the gaps in the spectrum are distributed densely. 
Since the ferromagnetic magnon problem is similar to the electronic problem and 
especially the phonon one, the conclusions derived for the electronic problem and, in 
particular, the phonon one are also applicable to the ferromagnetic magnon problem. 
Associated with the self-similarity of the spectrum, the spin wave also displays the self- 
similarity and at many frequencies the spin-wave functions obey the power-law scaling 
properties, IS,' I - np. At higher frequencies the bands in the spectrum are small with 
large gaps while at lower frequencies the bands are large with small gaps. As I--+ =, the 
states near the upper bound of the spectrum tend to be localised, the spin-wave functions 
behaving locally. On the contrary, the gaps tend to vanish in the low-frequency limit 
U - 0. The bands in this region are very similar to those in the crystalline case and the 
states then tend to be extended with the wave-like spin-wave functions. 

The antiferromagnetic Fibonacci chain of spins may be treated with suitable revision 
of the ferromagnetic Fibonacci chain of spins. Suppose that the spins at even quasilattice 
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points constitute the sub-quasilattice I with the spins up (+), while the spins labelled by 
odd integers form the sub-quasilattice I1 with the spins down (-). Only the nearest- 
neighbour couplings are still considered and the two types of couplings, J A  and J B ,  are 
chosen to be negative in the antiferromagnetic case. 

By careful examination of equations (4a-c), the equation of motion at low exci- 
tations, for the sub-quasilattice I ,  can be written as 

d S'l,ld t = K*/l (Sip - I + si, 1 + K,+ 1 (Si, + s i p +  I ) 
d s ;, /d l =  - K, (Si, - I + 1 - Kz,, + I (s'l/l + si, + 1 

dS&/dt  = 0 

( 2  1 0) 

(21b) 

( 2  1 c) 

where K, = -2J2,,S = 2IJ,lS and KZpTI  = -2J+,lS = 21J2,,*llS. 

case. Equations (21a) and ( b )  can be expressed as 
Assume that S; = U,, exp( -iwt) and S;, = U,, exp(-iwr), as in the ferromagnetic 

m, = iK&-I +S;p)+iK2/,+l(S;/l +s;/,+l) 
iws;p = K2, (s;, - I + s;, 1 + K, + I (SYp + .%,I + I 1. 

WS,: = KZp+lS?p+I + K2&-I + (K2p+l + KZp)S$,. 

- w s  2:, + I = K, + 2 s 2:, + 2 + K, + I s 2:, + (K, + 2 + KZp + I 1s 2:, + I . 

(22a) 

(22b)  

(23) 

(24) 

These two equation scan be then converted, withS+ = S' + is', to the following equation 

Similarly, the equation of motion for the sub-quasilattice I1 can be converted into 

In matrix form, equations (23) and (24)  are written respectively as 

and 

It follows from equations (25) and (26) that the antiferromagnetic magnon properties 
may be also studied by the transfer-matrix technique. Just as in the crystalline case, the 
antiferromagnetic magnon spectrum of the i D  quasiperiodic system is different from 
that in the ferromagnetic case, but the feature of densely populated gaps in the frequency 
spectrum is still preserved. Details concerning the antiferromagnetic magnon properties 
of the I D  quasiperiodic system will be discussed elsewhere. 
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